
Implementation of a Scalable and Robust Messaging Solution for Flexibility

Trading

Ferdinand von Tüllenburg, Jia Lei Du,

Georg Panholzer

Salzburg Research Forschungsgesellschaft mbH

Salzburg, Austria

{ferdinand.tuellenburg, jia.du,

georg.panholzer}@salzburgresearch.at

Rafael Vidal

Technological Institute of Aeronautics

So Jos dos Campos, Brazil

rafael.vidal125@gmail.com

Abstract—As Smart Grids highly depend on the information

exchange between its components, messaging usually plays an

important role. The messaging solutions used in Smart Grids

are demanded to be scalable and robust. Scalable due to the

usually large spatial extends and many communicating

components, Robust due to the criticality of reliable

information transfer for Smart Grid operation.

In context of a flexibility coordination paradigm, where

controllable and decentralized power sources and loads are

utilized for stable grid operation, this article focuses on the

development and implementation of a suitable message-

oriented middleware solution. Though, particularly designed

towards the system architecture and functional requirements

or the flexibility coordination use case, the envisaged

messaging solution aims at being applicable to a broad variety

of Smart Grid applications. Apart from describing the

components of the messaging system, also an application

programming interface for the messaging solution is

introduced. This interface is provided to component

implementors with special attention to ease-of-use. Finally, we

provide some performance considerations and evaluations on

the developed system.

Index Terms—Flexibility Trading, Messaging Middleware,

Smart Grid, Reliable Messaging

I. INTRODUCTION

In future electrical power systems decentralized
controllable power sources and loads will be coordinated in
order to equalise production and consumption of electrical
power and also optimise power flows through the grid. One
control mechanism in this context is flexibility coordination
using the capabilities of assets (e.g. photovoltaics, batteries,
industrial loads) to time-shift consumption or production
and/or adapt the amount of produced or consumed power.

In the ERA-Net Smart Grids Plus project Callia the
concept of flexibility coordination is examined in an pan-
European context. System operators at distribution (DSO)
and transmission (TSO) level as well as owners of flexibility
sources are linked together in a technical (through an ICT-
system) and also a legal/business sense. Aim is to allow
coordination of flexibilities within scope of a single
distribution system (intra-DSO) or between multiple
distribution systems (inter-DSO). The project investigates

opportunities and challenges of collaborative grid balancing
and develops suitable business models including flexibility
market design and tradable products. At the end of the
project the developed solutions will be implemented in a
pan-European testbed including real controllable loads and
distributed power sources.

As flexibility coordination highly depends on
communication between grid operators, flexibility owners
and their assets, one important research target of the Callia
project is the development of a suitable messaging solution.
Like many Smart Grid applications, the flexibility
coordination use case also includes large spatial extends,
comprising of large amounts of interconnected systems and
devices, additionally to being a critical infrastructure. Due to
this in particular scalability and robustness of the messaging
systems is demanded.

From the perspective of a messaging system robustness
means that information distribution is possible at least in
non-affected parts of the system even in case of active
failures within other parts of the messaging system.
Scalability means to support large numbers of components
(hardware and software) which need to exchange messages.
This requires the messaging system to provide high
throughput in terms of messages per time unit.

Due to aspects such as event-based character of
information interchange, better separation of concerns during
application development and its general applicability for
different communication scenarios we argue for message-
oriented middle aware (MOM) to be used in Smart Grids.
This article focuses on the implementation of a message-
oriented middleware suitable to but not limited to the
flexibility coordination use case.

II. RELATED WORK

In the past, message-oriented middleware has been
proposed to be used for Smart Grid applications mainly due
to the event-based character of information exchange. Smart
Grid applications are particularly well supported by systems
that use message-queuing to achieve asynchronous
messaging and message prioritization [1]. Several competing
solutions have been proposed, which can be generally
divided in broker-based (such as Kafka [2], Active MQ [3]
and [4]) and brokerless approaches such as Java Messaging
Service (JMS) [5], NSQ [6] or ZeroMQ [7]). Broker-based

systems use a central system as information hub between
communicating peers, while brokerless systems mainly
provide an API abstracting the details of network
communication. For the sake of simpler connection
management and system configuration we argue for using a
broker-based system [8].

Apart from the stated MOM solutions, also cloud-based
solutions such as Amazon SQS+SNS or solutions belonging
to Microsoft Azure are available. However, it was decided to
exclude those from our considerations, as power system
operators traditionally provide their own communication
services because they represent critical infrastructure.

Furthermore, broker-based message-queuing systems
exist basically in two flavours: message-oriented and data-
centric. Message-oriented solutions uses message queues to
distributed messages from one or more senders to one or
more interested receivers. Data-centric message queuing
systems use a system data model shared between all parties
and as the data is changed by one party this particular change
is published to all interested parties. It has been
recommended to apply a data-centric messaging solution
(namely OMG Data Distribution Service (DDS) [9]) mainly
due to its focus on in-time information distribution and built-
in rich end-to-end quality of service (QoS)[10]. Particularly
for Smart Grid applications, however, there are a few reasons
why message-oriented approaches would be more suitable.
First, even if means for end-to-end QoS are defined with
DDS, those are hardly helpful in wide-area-network (WAN)
environments due to limited knowledge about the network.
Second, the DDS approach leads to a very strong coupling
between messaging and application semantics leading to
complex system descriptions with limited re-usability and
extensibility. Especially due to the latter, following the
vision of providing a generally applicable messaging
solution, message-oriented systems seem to be the better
starting point.

Focusing on broker-based message-oriented middleware
solutions several products exist. For the usage particularly in
Smart Grid scenarios only Harmony has support for quality
of service (QoS) awareness for messaging in large-scale
cyber-physical-systems (CPS) such as Smart Grids. [11]. The
system consists of several interconnected broker instances
distributed over a large geographical area where each broker
instance provides a regional (local) connection point for field
devices such as grid sensors. By employing network
monitoring and overlay routing, the system optimizes the
inter-broker communication regarding network resource
usage and message delays respective to application
requirements by supporting prioritisation. Although the
stated features are attractive, the project seems not be
supported anymore which is why it has been ruled out for
our usage.

While the Harmony broker-based MOM is particularly
designed for usage in Smart Grids field, several other broker-
based MOMs have been developed in industry and research.
Underneath those, particularly Apache Kafka [2] as well as
ActiveMQ [3] and RabbitMQ [4] (both based on AMQP
[12]), gained most attention in last years. Though not
especially mentioned in context of Smart Grids, these

solutions are frequently used in big data and Internet-of-
Things applications making them interesting candidates for
being used. However, due to their similarities a more
detailed comparison is necessary (following in section IV.).

Figure 1 Overview of the System and Messaging Architecture for the

flexibility-coordination use case.

III. SYSTEM AND MESSAGING ARCHITECTURE FOR

FLEXIBILITY TRADING

Figure 1 shows the layered agent-architecture developed in

the project. At the bottom layer (Flexibility Asset Layer)

reside device agents providing a common control interface

of power grid hardware (e.g. a photovoltaic system or a

battery) to the flexibility coordination system. Additionally,

device agents implement a device-specific interface in order

to read status information (such as state of charge of a

battery) directly from the device or send control commands

(e.g. charge or discharge) towards the device.

Within the hierarchy, each device agent may be directly

connected to exactly one agent at the cluster layer or

aggregation layer. Both are serving the purpose of

condensing and aggregating flexibility potentials of assets.

The difference between both layers is that the cluster agents

groups assets belonging logically together (e.g. situated in

one facility) while aggregator agents groups whole clusters

or individual assets due to contractual (business) relation.

Aggregator agents trade flexibilities at the market on behalf

of asset owners.

At the market platform the aggregator bids are processed

and flexibility potential is exchanged with respect to an

optimal grid operation. A certain set of flexibilities is

selected for activation at the market platform from the

transmitted bids with respect to the current grid state.

From the perspective of information flow, from device

agents up to the market (upstream) flexibility information in

form of device states or flexibility bids is transmitted. In the

opposite direction (downstream), control signals for

flexibility scheduling and activation are transmitted.

Figure 2 Diagram of an Apache Kafka topic and its partitions

The deployment of message-oriented middleware (MOM)

instances within the system architecture is done as shown in

Figure 1. Instances are deployed at each border between two

vertically neighbored layers for each combined group. Thus,

the MOM instances are provided and individually

configured by either a cluster owner (e. g. a facility

operator), an aggregator participating in flexibility trading

or the market platform operator. This approach takes into

account the security, robustness, scalability and also control

of system. The MOM providers at each level have better

knowledge about connected agents, for instance by exactly

knowing device types (e.g. for cluster owners) or

contractual relations (at market or aggregator level).

Additionally, the connected agents at each MOM instance

are limited to a small number compared to a centralized

solution. Both aspects are especially important for large

scale deployments where thousands of agents participate in

flexibility trading.

IV. MESSAGE BROKERING FOR FLEXIBILITY TRADING

In order to find a good basis for our developments we
compared the features of Apache Kafka, RabbitMQ and
ActiveMQ. According to a study that has shown that only
marginal differences (feature-wise and performance-wise)
exist between ActiveMQ and RabbitMQ[13], both are
considered jointly in the rest of this article.

The comparison has been done with regard to robustness,
reliable message transfers, scalability and security. However,
from a coarse-grained view onto these features, all are sup-
ported in slightly different ways by the considered MOM
implementations. For instance in terms of security, all of
them provide TLS encrypted communication between broker
and senders or receivers. In terms of reliable message
transfers, guaranteed messaging delivery is supported by
both as well as message priorities (not directly by Kafka, but
easily achievable by using different topics/partitions) and in-
order-delivery. In terms of robustness, both AMQP-based
brokers and Kafka can be operated in clusters as well as
provide message persistence (using extension software for
RabbitMQ and ActiveMQ). Clustering also is also a means
for achieving scalability.

Going into more detail, however, reveals that Kafka has
aspects more supportive of scalability and performance com-
pared to AMQP-based approaches. The first aspect is the
concept of partitions Kafka provides (see Figure 2).
Partitions can be seen as message sub-queues within a single
topic, where published messages get stored in an immutable

first-in- first-out order. This allows for parallel writes into
one topic particularly improving scalability with respect to
multiple producers (senders) of messages. Published
messages get sorted into exactly one certain partition of the
topic - either directly specified by the producer or in a round-
robin manner controlled by Kafka. For message consumption
a consumer polls a topic and retrieves the messages of any of
the partitions. At the receiver side, Kafka provides - similar
to AMQP - consumer groups, speeding up processing of
messages in a topic. Parallel reads and writes minimize the
additional latency induced by message brokering in general.

Furthermore, Kafka provides high performance message
persistence at scale. Kafka is using linear disk I/O provided
by operating system cache paging. In doing so, Kafka
persists every single message to disk before delivery
ensuring durable messaging including message replay.
Replaying messaged can be used by receivers which need to
restart (e.g. due to failure) or even for traceability of the
whole system.

Though an experiment revealed that messaging latency
(time between producing and consuming a message) with
Kafka is high compared to AMQP-messaging 1 , it gets
apparent that Kafka shows its strengths when large amounts
of messages are sent due to batch-processing at sender and
consumer side. Unfortunately, especially batching (sending /
receiving of multiple messages at a time) is something which
is considered as uncommon in Smart Grid applications.
These operate more event-based (single messages are sent if
a certain event happens).

However, as those delay-values for the single message
test in the evaluation stated above appeared implausibly
high, we decided to examine own tests with disabled
batching (discussed in section VI). Also another evaluation
(showing higher throughput and lower latency of Kafka
compared to others) [14] raises doubts on those stated
results. With respect to scalability, CPU load at the broker
both stated experiments revealed higher frugality of Kafka
even if a high load of messages are sent.

All in all, especially some technical details of Kafka’s
implementation as well as its’ experimentally shown higher
performance and scalability let us decided to bet on Kafka.

V. IMPLEMENTATION OF FLEXIBILITY-TRADING

MESSAGING

Beside the specific Kafka broker deployment architecture
and configuration for the flexibility trading application, a
messaging middleware client API for inter-agent information
exchange was developed. Thus, a very easy-to-use API is
provided through which most of the advantages and features
of the messaging solution can be used transparently.
Additionally, an efficient message serialization system is
included in the developed solution. The main design goals of
the messaging client API was the provisioning of a high-
level abstraction of messaging as well as message encoding
serialization which allows agent developers to focus on

1 https://dzone.com/articles/message-brokers-in-indirect-communication-

paradigm

developing agent logic without the need to know about
messaging details.

Before an agent is able to send or receive messages it
must be registered at the Kafka broker including exchanges
of necessary security credentials. Within the agent hierarchy,
each agent has connections to at least one and up to two
Kafka brokers - one broker for upstream data transfers and/or
one for downstream. For this a minimal set of information
needs to be provided in advance in form of a simple
configuration file which is given in listing 1.

Beside an unique identifier (at broker-level), addressing
information of the corresponding upstream and downstream
Kafka instances, the ID of the upstream-level agent and the
security configuration needs to be specified.

After the agent has successfully connected to a Kafka
broker, the agent is ready to send or receive messages. The
API provides simple methods for sending messages to and
receiving messages from other agents. The agent developer
need not be aware of the underlying persistency, guaranteed
delivery, fault tolerance, and other mechanisms. The code
examples in listing 2 for a sender and listing 3 for a receiver
use the Python API. A functionally identical Java API is also
available.

When sending a message, the API user only needs to
provide the direction of sending or receiving (upstream,
down- stream). The resolution of actual topic names is
hidden by the API, which is able to automatically derive
topic names by using the information given in the
configuration file and the following common topic naming
scheme:

1) The common topic for upstream messages is named

using the ID of the upper-layer agent with suffix ”-
in” appended. E.g. for agent ”cluster-1” the topic is
named ”cluster-1-in”.

2) The names of private topics for downstream
messages is created by appending the lower-layer
agent ID to the own ID separated by a hyphen. E.g.
the private topic for agent ”aggregator-1” and agent
”cluster-1” is named ”aggregator-1-cluster-1”.

For private topics the potential problem occurs that an
upper- layer agent must know the names of any lower-layer
agent prior to send messages. In case of our flexibility-
trading application, however, this shortcoming is alleviated
as an upper-layer agent is never required to initially contact a
lower- layer agent. This situation is now exploited by
inserting the ID of the sender agent into each application-

level message. This allows an upper-layer agent to derive the
correct private topic name.

With respect to scalability and efficiency of data transfers,
Apache Avro [15] has been used for serializing and de-
serializing application level messages into highly compact
binary representations. The basic concept of Avro is using
schema files (in JSON format) defining how application data
is to be serialized into binary data, and how binary data is to
be interpreted by a reader. In order to achieve efficient data
transfers, the schema files are not part of the actual binary
data but exchanged beforehand.

Generally, the developed messaging solution can be con-
figured to a large extent by simply editing the configuration
and/or schema files. As an example the communication
topology can be changed by editing the broker IP
addresses/agent IDs. Encryption can be switched on and off.
And the content/- format of the exchanged messages can be
changed by editing the Avro schema files. Thus application
developer using the developed messaging system can focus
on the business logic and mostly just configure the
messaging system.

VI. PERFORMANCE EVALUATION

To get a clearer sight on the scalability and performance
of Kafka with regard to the flexibility trading architecture
and the event-based messaging scenario first tests have been
performed. Especially the latter is an important difference to
already published evaluations as Kafka gets much of its
performance-boost from batch processing, which is not
applicable in event-based messaging scenarios.

In the first test we were interested in the basic overhead
regarding messaging latency the Kafka broker produces.
This test gives us an impression about suitability of the
solution for interactive and latency-sensitive applications. In

Listing 3 Code for receiving a message

from calliaMessaging import CalliaConsumer

calliaConsumer=CalliaConsumer

.createFromConfig(configFile)

msg = calliaConsumer.receive(UP)

print(”Received message ” + str(msg[”object”])+

” of type ” + msg[”type”] +

” from topic ” + msg[”topic”] +

” and sender ” + msg[”senderId”] +

” at ” + msg[”timestamp”])

Listing 2 Code for sending a message

from calliaMessaging import CalliaProducer

from calliaMessaging.examples import

exampleMessages

calliaProducer=CalliaProducer.createFromConfig

(configFile)

calliaProducer.send(exampleMessages

[’FlexOffer’], UP) Listing 1 Configuration file of a messaging client

own.id=cluster-1

agent.upstream.id=aggregator-1

kafka.upstream=192.168.100.135:9093

security.upstream=TLS

kafka.downstream=192.168.100.136:9093

security.downstream=TLS

the second test, a rough evaluation of the amount of
messages which can be sent per second without batching has
been carried out. This evaluates the scalability of our
solution with respect to an event-based communication
scenario with a multitude of independent communicating
components.

Figure 3 Empirical Cumulated Density Function of measured latency.

Shows more than 95% of the latency values are blow 6 ms. Max. 10 ms.

TABLE 1 HOST CONFIGURATIONS

Name CPU # Cores RAM

Producer Intel Pentium G3250 @ 3,20 GHz 2 12 GB
Broker Intel Core i5-4460S @ 2,90 GHz 4 16 GB
Consumer Intel Pentium G3250 @ 3,20 GHz 2 8 GB

The test setup for both tests comprises one message producer
instance, one single-instance Kafka messaging broker and
one message consumer instance distributed over three
physical machines. The hardware-specification is shown in
table I. The broker system is equipped with a solid state drive
(SSD). Regarding the network configuration, all hosts are
connected to one switch with a 1 Gigabit Ethernet network.
Thus, latency introduced by the underlying communication
network is neglected. For latency measurement all hosts are
NTP time-synchronized.

On the Kafka configuration side the standard
configuration has been applied with exception of the batch
size, which has been set to 200 Bytes (the message size used
in the test scenarios). Kafka API and broker system version
1.0.0 were used. Additionally in both tests a single topic with
1 partition has been used and the autocommit option has
been activated at the consumer side (which is default) and
acknowledgements at producer side are also activated. The
messages, containing a sending timestamp in milliseconds
and a sequence number, have a constant size of 200 Bytes
and are de- and encoded using Kafkas string serializer.

A. Latency Offset Evaluation

In this test, each second a single message is sent from

producer to consumer. In order to measure the latency, at

consumer side, the receiving timestamp is compared to the

sending timestamp in the message payload. Furthermore, the

sequence numbers of packets are tracked to detect packet

loss and reordering.

In a 30 minutes test 1800 messages have been sent from

producer to receiver. The maximum latency value has been

10ms the minimum value 2ms. On average (mean) 3.53ms

has been experienced. As can be seen from the ECDF graph

in figure 3, the impressive majority (more than 95% of the

values) lied below 6ms delay. During the tests it became

apparent, that the latency for the very first message (and

only the very first message) is around 200ms. This is due to

connection establishment (e.g. TCP 3-way-handshake) and

some Kafka related management operations. Thus, this

value has been omitted for our analysis and is not included

in the figure. Packet loss or reordering did not occur.

Altogether, the achieved performance is promisingly

even for the usage in event-based communication common

for many Smart Grid applications. Many latency-sensitive

applications in Smart Grids (such as remote control of field

devices) often require reaction times of 50ms or higher, and

the experienced latency overhead is well below that value.

Even more, with more application-specific system

configurations, the experienced latency could be further

decreased.

B. Burst Messaging Test

Instead of producing a single message every second in this

test as many messages as possible are sent in burst mode.

All other configurations remain unchanged compared to the

first test (in particular batching is disabled). In this test

scenario, basically the total number of successfully

transmitted messages has been evaluated using the sequence

numbers encoded in the messages.
During the 8 minute test period 1301170 messages were

sent resulting to a rate of 2710 messages/sec. This equals to a
goodput (only application data) of around 500 kilobyte/sec.
Packet loss or reordering did not occur.

Further evaluations showed that the limitation of message
rate stems from Kafka API configuration regarding
autocommit at consumer side and acknowledgements for
sent messages at producer side. Disabling both increased the
massage rate to 28825 messages/sec (goodput: about 5500
kilobyte/sec). Thus, message rate and throughput increased
by a factor of 10, roughly.

VII. CONCLUSION AND FUTURE WORK

While message-oriented middleware (MOM) is in

general claimed to be a viable solution for usage in energy

related applications, this work goes into details when MOM

is applied for grid control based on inter- and intra-DSO

flexibility-trading. This mechanism requires a messaging

system fulfilling requirements regarding scalability, fault-

tolerance, security, reliability and event-based data transfers.

A first result of our work is the proposal of Apache

Kafka based messaging oriented middleware, embedded

into a hierarchical system architecture consisting of various

types of agents. It is shown, that several aspects of Kafka

provide a beneficial basis in order to build a large-scale

messaging solution respecting the postulated application

specific requirements. Additionally we also provided details

on a messaging API hiding much of the complexity of the

messaging system and supporting implementers of agents.

As next step, this work will be extended by applying and

validating the messaging solution in a pan-European testbed

within the Callia project. Here, the main focus will be laid

on fault-tolerance and performance evaluations in a large-

scale WAN environment. In this large scale evaluation also

different communication technologies, in particular LTE,

3G-PLC will be included.

ACKNOWLEDGMENT

Callia is part of the ERA-Net Smart Grids Plus initiative
and carried out on behalf of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT) with
support from the European Union’s Horizon 2020 research
and innovation programme.

REFERENCES

[1] M. Albano, L. L. Ferreira, L. M. Pinho, and A. R. Alkhawaja,
“Message-oriented middleware for smart grids,” Computer Standards
& Interfaces, vol. 38, pp. 133–143, 2015.

[2] J. Kreps, N. Narkhede, J. Rao, and others, “Kafka: A distributed
messaging system for log processing,” in Proceedings of the NetDB,
2011, pp. 1–7. [Online]. Available:
http://people.csail.mit.edu/matei/courses/2015/6.S897/readings/kafka.p
df

[3] B. Snyder, D. Bosnanac, and R. Davies, ActiveMQ in action. Manning
Greenwich Conn., 2011, vol. 47.

[4] A. Videla and J. J. Williams, RabbitMQ in action: distributed
messaging for everyone. Manning, 2012.

[5] M. Richards, R. Monson-Haefel, and D. A. Chappell, “Java Message
Service: Creating Distributed Enterprise Applications,” O’Reilly
Media, Inc.”, 2009.

[6] NSQ Docs 1.0.0-compat - A realtime distributed messaging platform.”
[Online]. Available: http://nsq.io/

[7] P. Hintjens, ZeroMQ: messaging for many applications. ” O’Reilly
Media, Inc.”, 2013.

[8] Ferdinand von Tüllenburg, Georg Panholzer, Jia Lei Du et al., “An
Agent-based Flexibility Trading Architecture with Scalable and
Robust Messaging,” in Proceedings of the 2017 IEEE International
Conference on Smart Grid Communications (SmartGridComm)

[9] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in Distributed Computing Systems Workshops, 2003.
Proceedings. 23rd International Conference on. IEEE, 2003, pp. 200–
206.

[10] [10] A. R. Alkhawaja, L. L. Ferreira, and M. Albano, “Message
oriented middleware with qos support for smart grids,” in INForum
2012-Conference on Embedded Systems and Real Time., 2012.

[11] H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei, “Message-oriented
middleware with qos awareness,” in Service-Oriented Computing.
Springer, 2009, pp. 331–345.

[12] J. Kramer, “Advanced message queuing protocol (amqp),” Linux
Journal, vol. 2009, no. 187, p. 3, 2009.

[13] V. M. Ionescu, “The analysis of the performance of rabbitmq and
activemq,” in RoEduNet International Conference-Networking in
Education and Research (RoEduNet NER), 2015 14th. IEEE, 2015, pp.
132–137.

[14] V. John and X. Liu, “A survey of distributed message broker queues,”
arXiv preprint arXiv:1704.00411, 2017.

[15] “Welcome to Apache Avro!” [Online]. Available:
https://avro.apache.org/

