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Abstract—As Smart Grids highly depend on the information 

exchange between its components, messaging usually plays an 

important role. The messaging solutions used in Smart Grids 

are demanded to be scalable and robust. Scalable due to the 

usually large spatial extends and many communicating 

components, Robust due to the criticality of reliable 

information transfer for Smart Grid operation. 

In context of a flexibility coordination paradigm, where 

controllable and decentralized power sources and loads are 

utilized for stable grid operation, this article focuses on the 

development and implementation of a suitable message-

oriented middleware solution. Though, particularly designed 

towards the system architecture and functional requirements 

or the flexibility coordination use case, the envisaged 

messaging solution aims at being applicable to a broad variety 

of Smart Grid applications. Apart from describing the 

components of the messaging system, also an application 

programming interface for the messaging solution is 

introduced. This interface is provided to component 

implementors with special attention to ease-of-use. Finally, we 

provide some performance considerations and evaluations on 

the developed system. 

Index Terms—Flexibility Trading, Messaging Middleware, 

Smart Grid, Reliable Messaging 

I. INTRODUCTION 

In future electrical power systems decentralized 
controllable power sources and loads will be coordinated in 
order to equalise production and consumption of electrical 
power and also optimise power flows through the grid. One 
control mechanism in this context is flexibility coordination 
using the capabilities of assets (e.g. photovoltaics, batteries, 
industrial loads) to time-shift consumption or production 
and/or adapt the amount of produced or consumed power. 

In the ERA-Net Smart Grids Plus project Callia the 
concept of flexibility coordination is examined in an pan-
European context. System operators at distribution (DSO) 
and transmission (TSO) level as well as owners of flexibility 
sources are linked together in a technical (through an ICT-
system) and also a legal/business sense. Aim is to allow 
coordination of flexibilities within scope of a single 
distribution system (intra-DSO) or between multiple 
distribution systems (inter-DSO). The project investigates 

opportunities and challenges of collaborative grid balancing 
and develops suitable business models including flexibility 
market design and tradable products. At the end of the 
project the developed solutions will be implemented in a 
pan-European testbed including real controllable loads and 
distributed power sources. 

As flexibility coordination highly depends on 
communication between grid operators, flexibility owners 
and their assets, one important research target of the Callia 
project is the development of a suitable messaging solution. 
Like many Smart Grid applications, the flexibility 
coordination use case also includes large spatial extends, 
comprising of large amounts of interconnected systems and 
devices, additionally to being a critical infrastructure. Due to 
this in particular scalability and robustness of the messaging 
systems is demanded. 

From the perspective of a messaging system robustness 
means that information distribution is possible at least in 
non-affected parts of the system even in case of active 
failures within other parts of the messaging system. 
Scalability means to support large numbers of components 
(hardware and software) which need to exchange messages. 
This requires the messaging system to provide high 
throughput in terms of messages per time unit. 

Due to aspects such as event-based character of 
information interchange, better separation of concerns during 
application development and its general applicability for 
different communication scenarios we argue for message-
oriented middle aware (MOM) to be used in Smart Grids. 
This article focuses on the implementation of a message-
oriented middleware suitable to but not limited to the 
flexibility coordination use case. 

II. RELATED WORK 

In the past, message-oriented middleware has been 
proposed to be used for Smart Grid applications mainly due 
to the event-based character of information exchange. Smart 
Grid applications are particularly well supported by systems 
that use message-queuing to achieve asynchronous 
messaging and message prioritization [1]. Several competing 
solutions have been proposed, which can be generally 
divided in broker-based (such as Kafka [2], Active MQ [3] 
and [4]) and brokerless approaches such as Java Messaging 
Service (JMS) [5], NSQ [6] or ZeroMQ [7]). Broker-based 



systems use a central system as information hub between 
communicating peers, while brokerless systems mainly 
provide an API abstracting the details of network 
communication. For the sake of simpler connection 
management and system configuration we argue for using a 
broker-based system [8]. 

Apart from the stated MOM solutions, also cloud-based 
solutions such as Amazon SQS+SNS or solutions belonging 
to Microsoft Azure are available. However, it was decided to 
exclude those from our considerations, as power system 
operators traditionally provide their own communication 
services because they represent critical infrastructure. 

Furthermore, broker-based message-queuing systems 
exist basically in two flavours: message-oriented and data-
centric. Message-oriented solutions uses message queues to 
distributed messages from one or more senders to one or 
more interested receivers. Data-centric message queuing 
systems use a system data model shared between all parties 
and as the data is changed by one party this particular change 
is published to all interested parties. It has been 
recommended to apply a data-centric messaging solution 
(namely OMG Data Distribution Service (DDS) [9]) mainly 
due to its focus on in-time information distribution and built-
in rich end-to-end quality of service (QoS)[10]. Particularly 
for Smart Grid applications, however, there are a few reasons 
why message-oriented approaches would be more suitable. 
First, even if means for end-to-end QoS are defined with 
DDS, those are hardly helpful in wide-area-network (WAN) 
environments due to limited knowledge about the network. 
Second, the DDS approach leads to a very strong coupling 
between messaging and application semantics leading to 
complex system descriptions with limited re-usability and 
extensibility. Especially due to the latter, following the 
vision of providing a generally applicable messaging 
solution, message-oriented systems seem to be the better 
starting point. 

Focusing on broker-based message-oriented middleware 
solutions several products exist. For the usage particularly in 
Smart Grid scenarios only Harmony has support for quality 
of service (QoS) awareness for messaging in large-scale 
cyber-physical-systems (CPS) such as Smart Grids. [11]. The 
system consists of several interconnected broker instances 
distributed over a large geographical area where each broker 
instance provides a regional (local) connection point for field 
devices such as grid sensors. By employing network 
monitoring and overlay routing, the system optimizes the 
inter-broker communication regarding network resource 
usage and message delays respective to application 
requirements by supporting prioritisation. Although the 
stated features are attractive, the project seems not be 
supported anymore which is why it has been ruled out for 
our usage. 

While the Harmony broker-based MOM is particularly 
designed for usage in Smart Grids field, several other broker-
based MOMs have been developed in industry and research. 
Underneath those, particularly Apache Kafka [2] as well as 
ActiveMQ [3] and RabbitMQ [4] (both based on AMQP 
[12]), gained most attention in last years. Though not 
especially mentioned in context of Smart Grids, these 

solutions are frequently used in big data and Internet-of-
Things applications making them interesting candidates for 
being used. However, due to their similarities a more 
detailed comparison is necessary (following in section IV.). 

 

 
Figure 1 Overview of the System and Messaging Architecture for the 

flexibility-coordination use case. 

 

III. SYSTEM AND MESSAGING ARCHITECTURE FOR 

FLEXIBILITY TRADING 

Figure 1 shows the layered agent-architecture developed in 

the project. At the bottom layer (Flexibility Asset Layer) 

reside device agents providing a common control interface 

of power grid hardware (e.g. a photovoltaic system or a 

battery) to the flexibility coordination system. Additionally, 

device agents implement a device-specific interface in order 

to read status information (such as state of charge of a 

battery) directly from the device or send control commands 

(e.g. charge or discharge) towards the device. 

Within the hierarchy, each device agent may be directly 

connected to exactly one agent at the cluster layer or 

aggregation layer. Both are serving the purpose of 

condensing and aggregating flexibility potentials of assets. 

The difference between both layers is that the cluster agents 

groups assets belonging logically together (e.g. situated in 

one facility) while aggregator agents groups whole clusters 

or individual assets due to contractual (business) relation. 

Aggregator agents trade flexibilities at the market on behalf 

of asset owners. 

At the market platform the aggregator bids are processed 

and flexibility potential is exchanged with respect to an 

optimal grid operation. A certain set of flexibilities is 

selected for activation at the market platform from the 

transmitted bids with respect to the current grid state. 

From the perspective of information flow, from device 

agents up to the market (upstream) flexibility information in 

form of device states or flexibility bids is transmitted. In the 

opposite direction (downstream), control signals for 

flexibility scheduling and activation are transmitted. 



 
Figure 2 Diagram of an Apache Kafka topic and its partitions 

 

The deployment of message-oriented middleware (MOM) 

instances within the system architecture is done as shown in 

Figure 1. Instances are deployed at each border between two 

vertically neighbored layers for each combined group. Thus, 

the MOM instances are provided and individually 

configured by either a cluster owner (e. g. a facility 

operator), an aggregator participating in flexibility trading 

or the market platform operator. This approach takes into 

account the security, robustness, scalability and also control 

of system. The MOM providers at each level have better 

knowledge about connected agents, for instance by exactly 

knowing device types (e.g. for cluster owners) or 

contractual relations (at market or aggregator level). 

Additionally, the connected agents at each MOM instance 

are limited to a small number compared to a centralized 

solution. Both aspects are especially important for large 

scale deployments where thousands of agents participate in 

flexibility trading. 

IV. MESSAGE BROKERING FOR FLEXIBILITY TRADING 

In order to find a good basis for our developments we 
compared the features of Apache Kafka, RabbitMQ and 
ActiveMQ. According to a study that has shown that only 
marginal differences (feature-wise and performance-wise) 
exist between ActiveMQ and RabbitMQ[13], both are 
considered jointly in the rest of this article. 

The comparison has been done with regard to robustness, 
reliable message transfers, scalability and security. However, 
from a coarse-grained view onto these features, all are sup- 
ported in slightly different ways by the considered MOM 
implementations. For instance in terms of security, all of 
them provide TLS encrypted communication between broker 
and senders or receivers. In terms of reliable message 
transfers, guaranteed messaging delivery is supported by 
both as well as message priorities (not directly by Kafka, but 
easily achievable by using different topics/partitions) and in-
order-delivery. In terms of robustness, both AMQP-based 
brokers and Kafka can be operated in clusters as well as 
provide message persistence (using extension software for 
RabbitMQ and ActiveMQ). Clustering also is also a means 
for achieving scalability. 

Going into more detail, however, reveals that Kafka has 
aspects more supportive of scalability and performance com- 
pared to AMQP-based approaches. The first aspect is the 
concept of partitions Kafka provides (see Figure 2). 
Partitions can be seen as message sub-queues within a single 
topic, where published messages get stored in an immutable 

first-in- first-out order. This allows for parallel writes into 
one topic particularly improving scalability with respect to 
multiple producers (senders) of messages. Published 
messages get sorted into exactly one certain partition of the 
topic - either directly specified by the producer or in a round-
robin manner controlled by Kafka. For message consumption 
a consumer polls a topic and retrieves the messages of any of 
the partitions. At the receiver side, Kafka provides - similar 
to AMQP - consumer groups, speeding up processing of 
messages in a topic. Parallel reads and writes minimize the 
additional latency induced by message brokering in general. 

Furthermore, Kafka provides high performance message 
persistence at scale. Kafka is using linear disk I/O provided 
by operating system cache paging. In doing so, Kafka 
persists every single message to disk before delivery 
ensuring durable messaging including message replay. 
Replaying messaged can be used by receivers which need to 
restart (e.g. due to failure) or even for traceability of the 
whole system. 

Though an experiment revealed that messaging latency 
(time between producing and consuming a message) with 
Kafka is high compared to AMQP-messaging 1 , it gets 
apparent that Kafka shows its strengths when large amounts 
of messages are sent due to batch-processing at sender and 
consumer side. Unfortunately, especially batching (sending / 
receiving of multiple messages at a time) is something which 
is considered as uncommon in Smart Grid applications. 
These operate more event-based (single messages are sent if 
a certain event happens). 

However, as those delay-values for the single message 
test in the evaluation stated above appeared implausibly 
high, we decided to examine own tests with disabled 
batching (discussed in section VI). Also another evaluation 
(showing higher throughput and lower latency of Kafka 
compared to others) [14] raises doubts on those stated 
results. With respect to scalability, CPU load at the broker 
both stated experiments revealed higher frugality of Kafka 
even if a high load of messages are sent. 

All in all, especially some technical details of Kafka’s 
implementation as well as its’ experimentally shown higher 
performance and scalability let us decided to bet on Kafka. 

V. IMPLEMENTATION OF FLEXIBILITY-TRADING 

MESSAGING 

Beside the specific Kafka broker deployment architecture 
and configuration for the flexibility trading application, a 
messaging middleware client API for inter-agent information 
exchange was developed. Thus, a very easy-to-use API is 
provided through which most of the advantages and features 
of the messaging solution can be used transparently. 
Additionally, an efficient message serialization system is 
included in the developed solution. The main design goals of 
the messaging client API was the provisioning of a high-
level abstraction of messaging as well as message encoding 
serialization which allows agent developers to focus on 

                                                           
1  https://dzone.com/articles/message-brokers-in-indirect-communication-

paradigm 



developing agent logic without the need to know about 
messaging details. 

Before an agent is able to send or receive messages it 
must be registered at the Kafka broker including exchanges 
of necessary security credentials. Within the agent hierarchy, 
each agent has connections to at least one and up to two 
Kafka brokers - one broker for upstream data transfers and/or 
one for downstream. For this a minimal set of information 
needs to be provided in advance in form of a simple 
configuration file which is given in listing 1. 
 

 
 
Beside an unique identifier (at broker-level), addressing 
information of the corresponding upstream and downstream 
Kafka instances, the ID of the upstream-level agent and the 
security configuration needs to be specified. 

After the agent has successfully connected to a Kafka 
broker, the agent is ready to send or receive messages. The 
API provides simple methods for sending messages to and 
receiving messages from other agents. The agent developer 
need not be aware of the underlying persistency, guaranteed 
delivery, fault tolerance, and other mechanisms. The code 
examples in listing 2 for a sender and listing 3 for a receiver 
use the Python API. A functionally identical Java API is also 
available. 

When sending a message, the API user only needs to 
provide the direction of sending or receiving (upstream, 
down- stream). The resolution of actual topic names is 
hidden by the API, which is able to automatically derive 
topic names by using the information given in the 
configuration file and the following common topic naming 
scheme: 

 
1) The common topic for upstream messages is named 

using the ID of the upper-layer agent with suffix ”-
in” appended. E.g. for agent ”cluster-1” the topic is 
named ”cluster-1-in”. 

2) The names of private topics for downstream 
messages is created by appending the lower-layer 
agent ID to the own ID separated by a hyphen. E.g. 
the private topic for agent ”aggregator-1” and agent 
”cluster-1” is named ”aggregator-1-cluster-1”. 
 

For private topics the potential problem occurs that an 
upper- layer agent must know the names of any lower-layer 
agent prior to send messages. In case of our flexibility-
trading application, however, this shortcoming is alleviated 
as an upper-layer agent is never required to initially contact a 
lower- layer agent. This situation is now exploited by 
inserting the ID of the sender agent into each application-

level message. This allows an upper-layer agent to derive the 
correct private topic name. 
 

 
 

 
 
With respect to scalability and efficiency of data transfers, 
Apache Avro [15] has been used for serializing and de- 
serializing application level messages into highly compact 
binary representations. The basic concept of Avro is using 
schema files (in JSON format) defining how application data 
is to be serialized into binary data, and how binary data is to 
be interpreted by a reader. In order to achieve efficient data 
transfers, the schema files are not part of the actual binary 
data but exchanged beforehand. 

Generally, the developed messaging solution can be con- 
figured to a large extent by simply editing the configuration 
and/or schema files. As an example the communication 
topology can be changed by editing the broker IP 
addresses/agent IDs. Encryption can be switched on and off. 
And the content/- format of the exchanged messages can be 
changed by editing the Avro schema files. Thus application 
developer using the developed messaging system can focus 
on the business logic and mostly just configure the 
messaging system. 

VI. PERFORMANCE EVALUATION 

To get a clearer sight on the scalability and performance 
of Kafka with regard to the flexibility trading architecture 
and the event-based messaging scenario first tests have been 
performed. Especially the latter is an important difference to 
already published evaluations as Kafka gets much of its 
performance-boost from batch processing, which is not 
applicable in event-based messaging scenarios. 

In the first test we were interested in the basic overhead 
regarding messaging latency the Kafka broker produces. 
This test gives us an impression about suitability of the 
solution for interactive and latency-sensitive applications. In 

Listing 3  Code for receiving a message 

 
from calliaMessaging import CalliaConsumer 

 

calliaConsumer=CalliaConsumer 

.createFromConfig(configFile) 

msg = calliaConsumer.receive(UP) 

 

print(”Received message ” + str(msg[”object”])+ 

” of type ” + msg[”type”] + 

” from topic ” + msg[”topic”] + 

” and sender ” + msg[”senderId”] + 

” at ” + msg[”timestamp”]) 

Listing 2 Code for sending a message 

 
from calliaMessaging import CalliaProducer 

from calliaMessaging.examples import 

exampleMessages 

 

calliaProducer=CalliaProducer.createFromConfig  

(configFile) 

calliaProducer.send(exampleMessages 

[’FlexOffer’], UP) Listing 1 Configuration file of a messaging client 

 
own.id=cluster-1 

agent.upstream.id=aggregator-1 

kafka.upstream=192.168.100.135:9093 

security.upstream=TLS 

kafka.downstream=192.168.100.136:9093 

security.downstream=TLS 



the second test, a rough evaluation of the amount of 
messages which can be sent per second without batching has 
been carried out. This evaluates the scalability of our 
solution with respect to an event-based communication 
scenario with a multitude of independent communicating 
components. 

 

 
 

Figure 3 Empirical Cumulated Density Function of measured latency. 

Shows more than 95% of the latency values are blow 6 ms. Max. 10 ms. 
 

TABLE 1 HOST CONFIGURATIONS 
 

Name CPU # Cores RAM 

Producer Intel Pentium G3250 @ 3,20 GHz 2 12 GB 
Broker Intel Core i5-4460S @ 2,90 GHz 4 16 GB 
Consumer Intel Pentium G3250 @ 3,20 GHz 2 8 GB 

 
The test setup for both tests comprises one message producer 
instance, one single-instance Kafka messaging broker and 
one message consumer instance distributed over three 
physical machines. The hardware-specification is shown in 
table I. The broker system is equipped with a solid state drive 
(SSD). Regarding the network configuration, all hosts are 
connected to one switch with a 1 Gigabit Ethernet network. 
Thus, latency introduced by the underlying communication 
network is neglected. For latency measurement all hosts are 
NTP time-synchronized. 

On the Kafka configuration side the standard 
configuration has been applied with exception of the batch 
size, which has been set to 200 Bytes (the message size used 
in the test scenarios). Kafka API and broker system version 
1.0.0 were used. Additionally in both tests a single topic with 
1 partition has been used and the autocommit option has 
been activated at the consumer side (which is default) and 
acknowledgements at producer side are also activated. The 
messages, containing a sending timestamp in milliseconds 
and a sequence number, have a constant size of 200 Bytes 
and are de- and encoded using Kafkas string serializer. 

A. Latency Offset Evaluation 

In this test, each second a single message is sent from 

producer to consumer. In order to measure the latency, at 

consumer side, the receiving timestamp is compared to the 

sending timestamp in the message payload. Furthermore, the 

sequence numbers of packets are tracked to detect packet 

loss and reordering. 

In a 30 minutes test 1800 messages have been sent from 

producer to receiver. The maximum latency value has been 

10ms the minimum value 2ms. On average (mean) 3.53ms 

has been experienced. As can be seen from the ECDF graph 

in figure 3, the impressive majority (more than 95% of the 

values) lied below 6ms delay. During the tests it became 

apparent, that the latency for the very first message (and 

only the very first message) is around 200ms. This is due to 

connection establishment (e.g. TCP 3-way-handshake) and 

some Kafka related management operations. Thus, this 

value has been omitted for our analysis and is not included 

in the figure. Packet loss or reordering did not occur. 

Altogether, the achieved performance is promisingly 

even for the usage in event-based communication common 

for many Smart Grid applications. Many latency-sensitive 

applications in Smart Grids (such as remote control of field 

devices) often require reaction times of 50ms or higher, and 

the experienced latency overhead is well below that value. 

Even more, with more application-specific system 

configurations, the experienced latency could be further 

decreased. 

B. Burst Messaging Test 

Instead of producing a single message every second in this 

test as many messages as possible are sent in burst mode. 

All other configurations remain unchanged compared to the 

first test (in particular batching is disabled). In this test 

scenario, basically the total number of successfully 

transmitted messages has been evaluated using the sequence 

numbers encoded in the messages. 
During the 8 minute test period 1301170 messages were 

sent resulting to a rate of 2710 messages/sec. This equals to a 
goodput (only application data) of around 500 kilobyte/sec. 
Packet loss or reordering did not occur. 

Further evaluations showed that the limitation of message 
rate stems from Kafka API configuration regarding 
autocommit at consumer side and acknowledgements for 
sent messages at producer side. Disabling both increased the 
massage rate to 28825 messages/sec (goodput: about 5500 
kilobyte/sec). Thus, message rate and throughput increased 
by a factor of 10, roughly. 

VII. CONCLUSION AND FUTURE WORK 

While message-oriented middleware (MOM) is in 

general claimed to be a viable solution for usage in energy 

related applications, this work goes into details when MOM 

is applied for grid control based on inter- and intra-DSO 

flexibility-trading. This mechanism requires a messaging 

system fulfilling requirements regarding scalability, fault-

tolerance, security, reliability and event-based data transfers. 

A first result of our work is the proposal of Apache 

Kafka based messaging oriented middleware, embedded 

into a hierarchical system architecture consisting of various 

types of agents. It is shown, that several aspects of Kafka 

provide a beneficial basis in order to build a large-scale 

messaging solution respecting the postulated application 

specific requirements. Additionally we also provided details 



on a messaging API hiding much of the complexity of the 

messaging system and supporting implementers of agents. 

As next step, this work will be extended by applying and 

validating the messaging solution in a pan-European testbed 

within the Callia project. Here, the main focus will be laid 

on fault-tolerance and performance evaluations in a large-

scale WAN environment. In this large scale evaluation also 

different communication technologies, in particular LTE, 

3G-PLC will be included. 
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